NMF-based temporal feature integration for acoustic event classification
نویسندگان
چکیده
In this paper, we propose a new front-end for Acoustic Event Classification tasks (AEC) based on the combination of the temporal feature integration technique called Filter Bank Coefficients (FC) and Non-Negative Matrix Factorization (NMF). FC aims to capture the dynamic structure in the short-term features by means of the summarization of the periodogram of each short-term feature dimension in several frequency bands using a predefined filter bank. As the commonly used filter bank has been devised for other tasks (such as music genre classification), it can be suboptimal for AEC. In order to overcome this drawback, we propose an unsupervised method based on NMF for learning the filters which collect the most relevant temporal information in the short-time features for AEC. The experiments show that the features obtained with this method achieve significant improvements in the classification performance of a Support Vector Machine (SVM) based AEC system in comparison with the baseline FC features.
منابع مشابه
Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species
Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in partic...
متن کاملNonnegative features of spectro-temporal sounds for classification
A parts-based representation is a way of understanding object recognition in the brain. The nonnegative matrix factorization (NMF) is an algorithm which is able to learn a parts-based representation by allowing only non-subtractive combinations (Lee and Seung, 1999). In this paper we incorporate a parts-based representation of spectro-temporal sounds into the acoustic feature extraction, which ...
متن کاملPhoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملAcoustic Event Detection Method Using Semi-supervised Non-negative Matrix Factorizationwith a Mixture of Local Dictionaries
This paper proposes an acoustic event detection (AED) method using semi-supervised non-negative matrix factorization (NMF) with a mixture of local dictionaries (MLD). The proposed method based on semi-supervised NMF newly introduces a noise dictionary and a noise activation matrix both dedicated to unknown acoustic atoms which are not included in the MLD. Because unknown acoustic atoms are bett...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013